pte20120116015 in Leben

Forscher bestätigen Kondo-Theorie

Tieftemperatur-Messungen widerlegen bisherige Annahmen


Kalt und kälter: Mischkühler an der TU Wien (Foto: TU Wien)
Kalt und kälter: Mischkühler an der TU Wien (Foto: TU Wien)

Wien (pte015/16.01.2012/13:00) Der Kondo-Effekt kann durch zusätzliche äußere Einflüsse zusammenbrechen - etwa durch ein äußeres Magnetfeld. "Beim Kondo-Effekt ist die Spin-Richtung eines Elektrons aber von außen gar nicht mehr sichtbar, weil sie von anderen Elektronen abgeschirmt wird. Ungefähr wie ein prominenter Partygast, der sofort von allen Seiten umringt wird, sodass man von außen nicht mehr feststellen kann, in welche Richtung er sich wendet", erklärt Silke Bühler-Paschen vom Institut für Festkörperphysik der Technischen Universität Wien http://tuwien.ac.at , gegenüber pressetext.

Quantenmechanische Korrelation

Wenn man beim Partybeispiel bleibt: Sobald im Saal mit den Partygästen das Buffet eröffnet wird. Fühlen sich die Besucher rund um den Stargast plötzlich zu den Tischen hingezogen. Der Abschirmungseffekt ist nicht mehr gegeben. Diese Analogie hinkt jedoch, da die Verbindung zwischen den Elektronen im Festkörper viel tiefer und komplizierter ist, als wir das von Alltagsobjekten kennen.

Die Elektronen sind quantenmechanisch korreliert. Unter gewissen Bedingungen - wenn etwa der Kondo-Effekt greift - verlieren sie im gewissen Sinn ihre Individualität und lassen sich nicht mehr getrennt voneinander beschreiben. Der Kondo-Effekt wurde bisher in verschiedenen Materialien bei extrem tiefen Temperaturen gemessen.

Kälte-Experimente aufschlussreich

Materialeigenschaften hängen oft davon ab, wie beweglich die Elektronen in einem Material sind und welche Energien sie annehmen können. "Der Kondo-Effekt tritt in gewissen Materialien bei tiefen Temperaturen auf. In diesen Materialien sind dann die Spins, die magnetische Richtung der Elektronen, nicht mehr erkennbar. Bei Änderung des äußeren Parameters kann man die Spins wieder sichtbar machen", so Bühler-Paschen. Bei Kälte untersucht sie die quantenmechanischen Vorgänge, die für das Materialverhalten verantwortlich sind.

"Der elektrische Strom wird beim 'Umschalten' geändert. Dort, wo der Kondo-Effekt ungestört ist, ist der Strom größer als dort, wo man den
Kondoeffekt zerstört hat", erklärt Bühler-Paschen. "Bisher dachte man, dass das Zusammenbrechen des Kondo-Effektes, das zuvor in einem stark anisotropen Material beobachtet wurde, mit zweidimensionalen Quanten-Fluktuationen zu tun hat."

Theoretische Forschung angestoßen

Ihre Messungen hat die Physikerin an einer Verbindung aus Cerium, Palladium und Silizium durchgeführt. "Hier haben wir es mit einem kubischen Kristall zu tun, der in allen drei Raumrichtungen gleich aussieht." Das Verhalten der Elektronen muss also dreidimensional beschrieben werden - mit zweidimensionalen Modellen lässt sich das nicht erklären.

Die Ursache wurde in der Geometrie der Kristallstruktur gesucht. Andererseits wurden auch andere Erklärungsversuche vorgeschlagen, die die beobachteten Effekte auf subtile Eigenheiten des untersuchten Materials zurückführen - doch Bühler-Paschen und ihrem Team gelang es, das selbe Verhalten in einem ganz anders gearteten Material nachzuweisen. "Wir stoßen mit unseren Ergebnissen die theoretische Forschung nun wieder an", meint Bühler-Paschen.

(Ende)
Aussender: pressetext.redaktion
Ansprechpartner: Oranus Mahmoodi
Tel.: +49-30-29770-2519
E-Mail: mahmoodi@pressetext.com
Website: www.pressetext.com
|