Hightech

HIGHTECH

11.06.2021 - 10:00 | ESET Deutschland GmbH
11.06.2021 - 06:10 | pressetext.redaktion
10.06.2021 - 11:00 | pressetext.redaktion

BUSINESS

11.06.2021 - 15:10 | Agentur für Gesundheit & Wellness
11.06.2021 - 15:05 | FH St. Pölten
11.06.2021 - 11:31 | pressetext.redaktion

MEDIEN

11.06.2021 - 10:32 | pressetext.redaktion
11.06.2021 - 06:00 | pressetext.redaktion
10.06.2021 - 12:00 | pressetext.redaktion

LEBEN

12.06.2021 - 09:30 | PRK MEDIA Beat René Roggen
11.06.2021 - 13:32 | pressetext.redaktion
11.06.2021 - 13:00 | Verein "Spielerhilfe"
pte20210121003 Forschung/Entwicklung, Technologie/Digitalisierung

KI-System erkennt Tonalität klassischer Musik

Schweizer Wissenschaftler trainierten mit über 13.000 Werken aus dem 15. bis 19. Jahrhundert


Klassische Musik: meist in Dur- oder Moll-Tonart (Foto: pixabay.com/artesitalia)
Klassische Musik: meist in Dur- oder Moll-Tonart (Foto: pixabay.com/artesitalia)

Lausanne (pte003/21.01.2021/06:05) - Forscher des École polytechnique fédérale de Lausanne (EPFL) http://epfl.ch haben eine Technologie entwickelt, die mithilfe von Maschinenlernen allein klassische Musik "anhören" kann und richtig bestimmten Tonalitäten - zum Beispiel Dur oder Moll - zuordnet. Um ihrem smarten System das dafür nötige musikalische Gespür einzuhauchen, haben sie es zunächst über 13.000 Werke aus dem 15. bis 19. Jahrhundert analysieren lassen. Damit wollen sie aufzeigen, wie sich klassische Musik im Laufe der Epochen verändert hat.

Dur versus Moll

"Viele Menschen wissen vielleicht gar nicht, was eine Moll-Tonart in der Musik ausmacht, aber die meisten würden wohl ein Stück erkennen, dass in einem Moll-Grundton gespielt wird. Das liegt daran, dass wir die Noten einer Moll-Tonskala intuitiv daran erkennen, dass sie eher düster, angespannt und traurig klingen", erklären Daniel Harasim, Fabian Moss, Matthias Ramirez und Martin Rohrmeier vom Digital and Cognitive Musicology Lab des EPFL. Töne aus der Dur-Tonleiter würden hingegen viel stärker, freundlicher und leichter erscheinen.

Während das Dur- und Moll-System vor allem im westlichen Kulturkreis von 1700 bis 1900 vorherrschend gewesen sei, habe es in anderen Epochen durchaus auch andere Tonalitäten gegeben. Bei einigen Komponisten seien zudem auch mehrere Tonarten miteinander vermischt worden. "Wir haben ein maschinelles Lernmodell entwickelt, um diese Unterschiede in einer Zeitspanne von der Renaissance über den Barock bis in die Klassik und frühe und späte Romantik hinein besser zu verstehen und visualisieren zu können", so die Wissenschaftler.

Eigene Charakteristika

Für die Umsetzung hat das EPFL-Team zunächst ein mathematisches Modell erstellt, um spezifische Charakteristika für die unterschiedlichen Tonarten zu definieren und später auch selbständig zu erkennen. Nach einem ausgiebigen Training spuckte ihr System dann interessante Daten aus. So fabrizierte es beispielsweise eine Grafik, die veranschaulicht, dass Musiker wie Giovanni Pierluigi da Palestrina während der Renaissance dazu tendierten, für ihre Kompositionen auf vier Tonarten zurückzugreifen. Im Barock beließen es Größen wie Johann Sebastian Bach dagegen bei nur zwei Tonarten.

"Wir wollten herausfinden, was passiert, wenn man einem Computer die Chance gibt, Musikdaten zu analysieren, die vorher nicht von Menschen aussortiert und zugeordnet worden sind. Deshalb passiert das maschinelle Lernen auch völlig unbeaufsichtigt. Unser System 'hört' sich die Musik an und erkennt dann ganz alleine, welche Tonart verwendet wird. Das liefert sehr interessante Ergebnisse", stellt Daniel Harasim klar.

(Ende)
Aussender: pressetext.redaktion
Ansprechpartner: Markus Steiner
Tel.: +43-1-81140-314
E-Mail: steiner@pressetext.com
Website: www.pressetext.com
|
|
98.232 Abonnenten
|
190.501 Meldungen
|
78.020 Pressefotos
Top